

- Logbook
- Radios
- Schematics
- RadioSparks
- Bibliotaphe
- Laboratory
- About

Search radioSPARKS

Schematics and Circuits Index

DATE:2/2/2012

Recent Searches

ent Gearenes Index/Filters

↑ Top

↑ Top

By Pages

about

bibliotaphe

DXnewsletter

errorlog

index

laboratory

logbook

privacy radios

schematics

sitemap

By Searching

Antenna Filters

E Figure 1165 :

SPACE WAR GUN

7535

9310

9430

NE602 OSCILLATOR CIRCUITS

9730

9435

9755 4855

5009

5320

4965 5295

3912

5835

By Schematics

Butterworth Filters

The filter is a simplified state variable architecture consisting of two cascaded 2nd-order secnos. Each section uses the 860° phase shift around the two op-amp loop to create a negative suming junction at A1's positive input. The circuit has low sensitivities for center frequency and Q, hich are set with the following equations:

 $\omega \ 0^2 = \frac{1}{(R_1 \times C_1 \times R_2 \times C_2)} \label{eq:omega}$ where,

 $R_1 = \frac{1}{(\omega 0 \times Q \times C_1)} \text{ and } R_2 = \frac{Q}{(\omega 0 \times C_2)}$

The dc bias applied to A2 and A4, half supply, is not needed when split supplies are available. The circuit swings rail-to-mill in the passband making it an excellent anti-aliasing filter for AOs. The amplitude response is flat to 1 kHz then rolls off at 80 dB/decade.

Figure 859: 1 kHz 4th Order Butterworth Filter

FILTERS

HF TO AM
FRQUENCY

CONVERTER
ANTENNA LOOP VHF

LOW FREQUENCY CONVERTER

SUPER-REGENERATIVE RECEIVER 100 KHZ CALIBRATION OSCILLATOR

VHF
ANTENNA AMPLIFIER UHF
LW/MW CONVERTER
TONE CONTROL
RANDOM LED SEQUENCE
GENERATOR
LOW POWER TRANSMITTER
AM MODULATOR
SIGNAL TRACER INJECTOR
AM TUBE TRANSMITTER

By Bibliotaphe

SAMSTILTON, HOMER B.

BABANI, BERNARD B.
G.E. METER INSTRUMENT
DEPT.
COWAN PUBLISHERS (CQ)
ROMNEY,ED
1947

GREENWOOD, HAROLD S. R. CONOT 1898 GERNSBACK LIBRARY ZANE GRAY H. MILEAF GOODMAN,ROBERT

By Logbook

ICELAND RADIO 11680 15205

15205 9685

R.MALI

6280

CBS TAIPEI 2

R.PERLA DEL ACRE

7538 5068.6

11715

15185

2490 SRI LANKA

R.FREE EUROPE

Links

radioSPARKS BLOG RSS Feed : Bibliotaphe RSS Feed : Schematics

 $R_1 = \frac{Q}{(\varpi) \times Q \times C_1)} \text{ and } R_2 = \frac{Q}{(\varpi) \times C_2)}$ The dc bias applied to A2 and A4, half supply, is not needed when split supplies are available the circuit swings rull-to-mil in the passband making it an excellent anti-aliasing filter for NDs.

Figure 864: 120kHz 4th Order Butterworth Filter

Figure 874 : 20 kHz Butterworth Active Filter

Band-pass Filters

Figure 899 : Active Band-Pass Filter Circuit

CW Audio Filters

↑ Top

↑ Top

RSS Feed: DX Ticker
RSS Feed: Media Schematics
radioSPARKS Google Wiki

NoTE:

Use FireFox! IE has problems.

🖺 Figure 900 : Active CW Audio Filter

↑ Top

High-pass Filters

Figure 901 : Active High-Pass Filter

↑ Top

Low-pass Filters

Figure 902 : Active Low-Pass Filter

↑ Top

Notch Q

This figure shows a circuit where the Q can be varied from 0.3 to 50. A fraction of the output is fed back to B3 and C3 by a second voltage follower, and the notch Q is dependent on the amount of signal fed back. A second follower is necessary to drive the twin "F" from a low-resistance source so that the notch frequency and depth will not change with the potentiometer setting.

Figure 903 : Adjustable Q Notch Filter

Band-pass Filters

Figure 925 : Band-Pass Filter

Combination Filters

The classic "state variable" two-integrator filter is known for its insensitivity to component variations, and its ability to provide three separate simultaneous outputs—low pass, high pass, and bandpass. Typically, a quad op amp is used to implement the state variable filter. The classic configuration uses two integrating amplifiers, a filter input amplifier, and a filter feedback amplifier. The design described here combines both input and feedback amplifiers into one adder/subtractor amplifier, achieving a three op-amp filter design (see the figure).

Figure 934 : Combination Filter

Comb Filters

DIGITAL COMB FILTER

DIGITAL COMB FILTER

The cross of the content of the signal comb filter (CD LOG) of the signal comb

↑ Top

↑ Top

↑ Top

Figure 950 : Digital Comb Filter

Notch Q

↑ Top

This shows a twin "T" network connected to an LM102 to form a high Q, 60-Hz notch filter. The junction of R3 and C3, which is normally connected to ground, is bootstrapped to the output of the follower. Because the output of the follower is a very low impedance, neither the depth nor the frequency of the notch change; however, the Q is raised in proportion to the amount of signal fed back to R3 and C3.

🖺 Figure 976 : High Q Notch Filter

↑ Top

High-pass Filters

Figure 975 : High-Pass Active Filter

Figure 979 : High-Pass Amplifier

This high-pass filter will attenuate AM stations by 40 dB. Its low-frequency cutoff is about $2.2\,$ MHz. This filter is useful for SW listening in areas of high AM radio signal strength.

Figure 978 : High-Pass Filter

Low-pass Filters

Figure 988 : Low-Pass Amplifier

↑ Top

↑ Top

Programmable Filters

The circuit in the figure shows how an analog, digitally programmable filter can be built using a UAF42. This monolitine, state-variable active filter chip provides a two-pole filter building block with low sensitivity to external component variations. It eliminates aliasing errors and clock feed though noise common to switched-capacitor filters. Low-pass, high-pass, bandpass, and notch (band-reject) outputs are available.

🖺 Figure 1022 : Programmable Analog Filter

↑ Top

Notch RC

Figure 1034 : RC Notch Filter

↑ Top

Low-pass Filters

Figure 1053 : Sallen KEY Low-Pass Filter

↑ Top

High-pass Filters

 $R_3 = 0.586 R_4$ Figure 1054 : Sallen-KEY High-Pass Filter

SAW Filters

↑ Top

Figure 1055 : SAW Filter Impedance Matching Preamplifier

↑ Top

Second-Order Voltage-Controlled

Desirable second-order voltage-controlled low-pass filter response can be achieved with this voltage-controlled filter (A). By using low-distortion, wide-bandwidth multipliers, it achieves higher cutoff frequencies than switched-capactor filters. If the circuit's R6 network has a time constant less than 200 ns, it should be replaced by a lag compensator network (B).

Figure 1057: Second-Order Voltage-Controlled Filter

State Variable Filters

↑ Top

 $\begin{tabular}{l} \blacksquare$ Figure 1066 : Single 3.3V Supply 4 Pole State Variable Filter

The state variable filter shown consists of only three op amps and a few passive components. It provides several key features. These include the ability to simultaneously provide low-pass, high-pass, and bandpass filter functions, and adjust bandwidth in a wide range by changing the values of C_i and R_i . The device also is easy to tune and simple to construct, while the quality factor (Q) of each filter is independent of each other.

🖺 Figure 1067 : State Variable Filter

↑ Top

Band-pass Filters

Figure 1080 : Two OP-AMP Band-Pass Filter

↑ Top

Low-pass Filters

The voltage at Output A, which should be unloaded by a follower, responds as though E_s were directed to the RC filter, but the filter's break frequency were proportional to E_s [i.e., = E_s ($E_0 RRC$)]. The frequency response has a break at f_s and the 6-diBoctave rolloff. The voltage at Output B has the same response, up to $|f_s| = 1/(2RRC)$], then levels off at a constant attenuation of $f_s (f_s = 1/(2RRC))$. For example, if $R = 8 \log \Omega$, $C = 0.002 \ \mu$ PC Output A has a pole at 100 Hz to 10 Hz and can be loaded. The circuit can be converted to high-pass by interchanging C and R.

Figure 1105 : Voltage Coltrolled Low-Pass Filter

↑ Top

VSB

This filter is for CH3, in order to get a vestigial sideband TV signal. It is designed for 75- Ω impedance levels.

Figure 1106: VSB Filter for Lm2889

posted by Ralph (VE3XRM) | 1:30:27 PM

© 2012 radioSPARKS.com | Site Map | Report Error | Site Policy | CMS | RSS 2.0 | XHTML 1.0 | CSS 2.1 [Page Views - 458] [Active Users - 2]